Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests
نویسندگان
چکیده
The goal of this study was to examine and predict antiviral peptides. Although antiviral peptides hold great potential in antiviral drug discovery, little is done in antiviral peptide prediction. In this study, we demonstrate that a physicochemical model using random forests outperform in distinguishing antiviral peptides. On the experimental benchmark, our physicochemical model aided with aggregation and secondary structural features reaches 90% accuracy and 0.79 Matthew's correlation coefficient, which exceeds the previous models. The results suggest that aggregation could be an important feature for identifying antiviral peptides. In addition, our analysis reveals the characteristics of the antiviral peptides such as the importance of lysine and the abundance of α-helical secondary structures.
منابع مشابه
AVPpred: collection and prediction of highly effective antiviral peptides
In the battle against viruses, antiviral peptides (AVPs) had demonstrated the immense potential. Presently, more than 15 peptide-based drugs are in various stages of clinical trials. Emerging and re-emerging viruses further emphasize the efforts to accelerate antiviral drug discovery efforts. Despite, huge importance of the field, no dedicated AVP resource is available. In the present study, we...
متن کاملComparison of Tourism Placement and Development Models from Land Use Planning perspective in Zagros Forests Case Study: Javanrud County
While in recent years, due to numerous reasons, the amount of travel and tourism has increased, the amount of problems caused by this activity is also considered by managers. By using presence points of tourists in Javanrud County, Analytic hierarchy process (AHP) and Random Forest (RF) models, the conditions of establishment of tourists from the aspect of land use planning was investigated. In...
متن کاملComparison of Survival Forests in Analyzing First Birth Interval
Background and objectives: Application of statistical machine learning methods such as ensemble based approaches in survival analysis has been received considerable interest over the past decades in time-to-event data sets. One of these practical methods is survival forests which have been developed in a variety of contexts due to their high precision, non-parametric and non-linear nature. This...
متن کاملCAMP: a useful resource for research on antimicrobial peptides
Antimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online ...
متن کاملQuantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors
Antimicrobial peptides are host defense peptides being viewed as replacement to broad-spectrum antibiotics due to varied advantages. Hepatitis is the commonest infectious disease of liver, affecting 500 million globally with reported adverse side effects in treatment therapy. Antimicrobial peptides active against hepatitis are called as anti-hepatitis peptides (AHP). In current work, we present...
متن کامل